

19th Edition Internal Medicine Core

Cardiology:

Page 13-11, Procedures and Labs > Pulmonary Artery Catheterization (PAC)

Table currently reads:

Table 13-3: Pulmonary Artery Catheterization Scenarios					
Condition	RA Press (mmHg)	Pulmonary Artery Press (mmHg)	PCWP (mmHg	BP (mmHg)	Comments
Normal	< 8	(13-28)/(3-13)	4-12	110/70	
Tamponade or constrictive pericarditis	18	32/18	19	70/50	Diastolic pressure equal in all 4 chambers!
RV failure due to RV infarct	15	21/11	10	70/50	RV unable to fill the L heart: high RA pressure and low PCWP and CO
Biventricular failure	18	30/20	20	70/50	Low CO in setting of high RA and PCWP; cardiogenic shock is common!
Mitral stenosis	18	90/32	30	110/70	
Pulmonary HTN	18	90/32	10	110/70	

Table should read:

Table 13-3: Pulmonary Artery Catheterization Scenarios					
Condition	RA Press (mmHg)	Pulmonary Artery Press (mmHg)	PCWP (mmHg)	BP (mmHg)	Comments
Normal	< 8	(15-25)/(8-15)	4–12	110/70	
Tamponade or constrictive pericarditis	18	32/18	19	70/50	Diastolic pressure equal in all 4 chambers!
RV failure due to RV infarct	15	21/11	10	70/50	RV unable to fill the L heart: high RA pressure and low PCWP and CO
Biventricular failure	18	30/20	20	70/50	Low CO in setting of high RA and PCWP; cardiogenic shock is common!
Mitral stenosis	18	90/32	30	110/70	
Pulmonary HTN	18	90/32	10	110/70	

Page 13-26, Acute Coronary Syndromes (ACSs) > ACSs — Management of Non-ST-Elevation Acute Coronary Syndromes (NSTE-ACSs) — The Acute Ischemia Pathway > Long-Term Antiplatelet Therapy after NSTE-ACSs

Text currently reads:	Text should read:
With bare-metal stent:	With bare-metal stent:
ASA 81 mg (range is 75–100 mg) daily for life	ASA 81 mg (range is 75–100 mg) daily for life
 Clopidogrel 75 mg daily, ticagrelor 10 mg daily, or prasugrel 90 mg bid for ≥ 1 year 	 Clopidogrel 75 mg daily, ticagrelor 90 mg bid, or prasugrel 10 mg daily for ≥ 1 year
With a drug-eluting stent:	With a drug-eluting stent:
ASA 81 mg (range is 75–100 mg) daily for life	ASA 81 mg (range is 75–100 mg) daily for life
 Clopidogrel 75 mg daily, ticagrelor 10 mg daily, or prasugrel 90 mg bid for ≥ 1 year 	 Clopidogrel 75 mg daily, ticagrelor 90 mg bid, or prasugrel 10 mg daily for ≥ 1 year

With no stent (medical therapy alone):	With no stent (medical therapy alone):
 ASA 81 mg (range is 75–100 mg) daily for life 	ASA 81 mg (range is 75–100 mg) daily for life
Clopidogrel 75 mg daily or ticagrelor 10 mg	Clopidogrel 75 mg daily or ticagrelor 90 mg bid
daily for ≥ 1 year	for ≥ 1 year

Page 13-38, Coronary Artery Disease (CAD) > Treatment of Hyperlipidemia > 2018 ACC / AHA Guidelines on Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Disease (ASCVD) Risk in Adults

Text currently reads:	Text should read:
Statin intensity is defined as:	Statin intensity is defined as:
High-intensity statin therapy	High-intensity statin therapy
(e.g., atorvastatin 40–80 mg daily, rosuvastatin	(e.g., atorvastatin 40–80 mg daily, rosuvastatin
10–20 mg daily) lowers	20–40 mg daily) lowers
LDL cholesterol by approximately 50%.	LDL cholesterol by approximately 50%.

Endocrinology:

Page 1-25, Adrenal Gland > Mineralocorticoids

Text currently reads:	Text should read:
Aldosterone is discussed extensively in the	Aldosterone is discussed extensively in the
Nephrology section. It increases Na ⁺ resorption	Nephrology section. It increases Na ⁺ resorption
and, hence, K ⁺ and H ⁺ excretion in the distal	and, hence, K ⁺ and H ⁺ excretion in the distal
tubules, causing hypokalemia and a metabolic	tubules, causing hypokalemia and a metabolic
acidosis. Increased Na ⁺ resorption means	alkalosis. Increased Na ⁺ resorption means
increased water retention and the tendency	increased water retention and the tendency
for hypertension. The release of aldosterone is	for hypertension. The release of aldosterone is
mainly controlled by both the renin-angiotensin	mainly controlled by both the renin-angiotensin
system and the K ⁺ level, but ACTH does have	system and the K⁺ level, but ACTH does have
some effect.	some effect.

Gastroenterology:

Page 14-62, Liver > Cirrhosis > Complications of Cirrhosis > Esophageal / Gastroesophageal Variceal Hemorrhage > Active Bleeds

Text currently reads:	Text should read:
Primary therapy of actively bleeding varices is	Primary therapy of actively bleeding varices is
HBV is the only hepatitis virus composed of	endoscopic banding +/- somatostatin (such as
DNA. The incubation period is 1–6 months. It is	octreotide) or sclerotherapy.
transmitted by contaminated blood products	
and infected body fluids. ndoscopic banding +/-	
somatostatin (such as octreotide) or	
sclerotherapy.	

General Internal Medicine:

Page 15-36, Preventive Medicine > Screening Tests > Lung Cancer

Text currently reads:	Text should read:
The USPSTF issued a recommendation in 2013	The USPSTF issued a recommendation in 2021
in favor of annual low-dose CT scan screening	in favor of annual low-dose CT scan screening
(Grade B) of individuals who meet all of	(Grade B) of individuals who meet all of
the following criteria:	the following criteria:
 Adults 55–80 years of age 	 Adults 50–80 years of age
Current smokers or those who have quit	Current smokers or those who have quit
within the past 15 years	within the past 15 years
• ≥ 30 pack years of smoking history	• ≥ 20 pack years of smoking history

Infectious Disease:

Page 4-49, Bacteria > Rickettsia

heading pathway changed to:

Page 4-49, Bacteria > Gram-Negative Bacteria > Rickettsia

Page 4-49, Bacteria > Rickettsia > Q Fever

heading name and pathway changed to:

Page 4-49, Bacteria > Gram-Negative Bacteria > Coxiella burnetii

Page 4-85, Antiviral Agents

Text currently reads:	Text should read:
Foscarnet is used in patients with ganciclovir-	Foscarnet is used in patients with acyclovir-
resistant herpes infection or as an alternative	resistant herpes infection or as an alternative
to ganciclovir for CMV.	to ganciclovir for CMV.

Nephrology:

Page 7-1, Renal Tests > Urinalysis (U/A) > Reagent Strip Testing

Text currently reads:	Text should read:
U/A is useful in patients with urinary symptoms	U/A is useful in patients with urinary symptoms
such as dysuria, urinary frequency, and urinary	such as dysuria, urinary frequency, and urinary
urgency. U/A, in combination with urine culture,	urgency. U/A, in combination with urine culture,
can quickly diagnose UTI. See more in the	can quickly diagnose UTI. See more in the
Geriatric Medicine section.	Infectious Disease section.

Page 7-45, Acid-Base Disorders > Metabolic Acidosis > NAGMA

Text currently reads:	Text should read:
Other drugs that can cause NAGMA include	Other drugs that can cause NAGMA include
acetazolamide (which inhibits proximal tubular	acetazolamide (which inhibits proximal tubular
HCO ₃ ⁻ reabsorption, thus causing a proximal RTA)	HCO ₃ ⁻ reabsorption, thus causing a proximal RTA)
and amphotericin (which causes proximal	and amphotericin (which causes distal tubular
tubular toxicity).	toxicity).

Page 7-46, Acid-Base Disorders > RTAs > Review of RTAs

Text currently reads:	Text should read:
Clues to analyzing possible RTA:	Clues to analyzing possible RTA:
All types of RTA cause a NAGMA.	All types of RTA cause a NAGMA.
Positive UAG is seen primarily in those	Positive UAG is seen primarily in those
with impaired distal acidification:	with impaired distal acidification:
distal (Type 2) and Type 4 RTA.	distal (Type 2) and Type 4 RTA.
Proximal (Type 1) RTA can cause	Distal (Type 1) RTA can cause
hypercalciuria +/- nephrocalcinosis or stones;	hypercalciuria +/- nephrocalcinosis or stones;
always elevated urine pH; and hypokalemia.	always elevated urine pH; and hypokalemia.
• Distal (Type 2) is characterized by HCO ₃ ⁻	 Proximal (Type 2) is characterized by HCO₃⁻
wasting. Especially consider MM and Fanconi	wasting. Especially consider MM and Fanconi
syndrome. With Fanconi syndrome, the	syndrome. With Fanconi syndrome, the
patient can present with metabolic acidosis,	patient can present with metabolic acidosis,
hypoglycemia, hypophosphatemia,	hypoglycemia, hypophosphatemia,
hypokalemia, and hyperchloremia.	hypokalemia, and hyperchloremia.

Page 7-55, Potassium Disorders > Hypokalemia > Causes of Hypokalemia

Text currently reads: Text should read: To determine the cause of hypokalemia, first look To determine the cause of hypokalemia, first look to the history and physical exam to see if there to the history and physical exam to see if there are obvious causes (e.g., vomiting, diarrhea, are obvious causes (e.g., vomiting, diarrhea, diuretic use). Usually the cause is obvious, but if diuretic use). Usually the cause is obvious, but if it is not, assess urinary K⁺ excretion to determine it is not, assess urinary K⁺ excretion to determine if there is renal K+ wasting (Figure 7-19 on page if there is renal K+ wasting (Figure 7-19 on page 7-56). This can be done with a 24-hour urine 7-56). This can be done with a 24-hour urine K⁺ measurement or a spot urine K⁺ measurement or a spot urine potassium:creatinine (K:Cr) ratio. If urinary K⁺ potassium:creatinine (K:Cr) ratio. If urinary K⁺ excretion is low (< 20 mEq/day or spot urine excretion is low (< 20 mEq/day or spot urine K:Cr ratio < 1 mEq/g), the kidney is responding K:Cr ratio < 13 mEq/g), the kidney is responding appropriately: Look again for GI sources of K⁺ loss appropriately: Look again for GI sources of K⁺ loss (e.g., surreptitious vomiting, laxative use) or (e.g., surreptitious vomiting, laxative use) or a reason for transcellular shifts (e.g., hypokalemic a reason for transcellular shifts (e.g., hypokalemic periodic paralysis). If urinary K⁺ is high periodic paralysis). If urinary K⁺ is high (> 20 mEq/day or spot urine K:Cr ratio (> 20 mEq/day or spot urine K:Cr ratio > 1 mEq/g), this indicates renal K⁺ wasting. In this > 13 mEq/g), this indicates renal K⁺ wasting. In case, the acid-base status and the BP can guide this case, the acid-base status and the BP can you to the correct diagnosis. See Figure 7-19 on guide you to the correct diagnosis. See Figure page 7-56. 7-19 on page 7-56.

Neurology:

Page 12-10, Dementia > Workup > Diagnosis of Dementia

Text currently reads:		Text should read:	
2)	Executive function—reasoning. Do they	2)	Executive function—reasoning. Do they
	understand appropriate danger? Can they		understand appropriate danger? Can they
	perform their activities of daily living (ADLs),		perform their instrumental activities of daily
	such as grocery shopping?		living (IADLs), such as grocery shopping?

Page 12-48, Neuropathies > Polyneuropathies > Other Causes of Axonal Neuropathies

Text should read:	
Know other somewhat common causes of axonal	
polyneuropathy, including:	
 Toxins, such as heavy metals (e.g., lead, 	
arsenic)	
 Chemotherapy drugs (e.g., vincristine) 	
• Isoniazid	
 B₆ (pyridoxine) overdose from nutritional 	
supplements	
 Organophosphates 	
Systemic illnesses (myeloma, amyloidosis,	
porphyrias, thyroid disease, hepatitis viruses,	
amyloidosis, and HIV/AIDS)	

Oncology:

Page 9-21, Lung Cancer > Screening

Text currently reads:	
Based on findings of the National Lung Screenir	18
Trial, the NCCN, the American College of Chest	
Physicians, and other professional societies,	
low-dose CT (LDCT) scanning for lung cancer	
screening is now recommended in high-risk	
individuals. The demonstrated benefit of LDCT	
is a relative reduction in mortality from lung	
cancer of 20% and a 6.7% reduction in all-cause	•
mortality. The risk reduction is achieved	
by finding lung cancer at an early stage and	
surgically resecting it. USPSTF 2020 draft	
guidelines recommend annual screening with	
LDCT for patients who are between 55 and	
80 years of age, have smoked ≥ 20 pack years,	
and are either current smokers or have quit	
within the past 15 years. Additional caveats	
to those who should be screened include:	

Text should read:

Based on findings of the National Lung Screening Trial, the NCCN, the American College of Chest Physicians, and other professional societies, I ow-dose CT (LDCT) scanning for lung cancer screening is now recommended in high-risk individuals. The demonstrated benefit of LDCT is a relative reduction in mortality from lung cancer of 20% and a 6.7% reduction in all-cause mortality. The risk reduction is achieved by finding lung cancer at an early stage and surgically resecting it. USPSTF 2020 draft guidelines recommend annual screening with LDCT for patients who are between 50 and 80 years of age, have smoked ≥ 20 pack years, and are either current smokers or have quit within the past 15 years. Additional caveats to those who should be screened include:

Psychiatry:

Page 16-28, Complications of Drug Therapy

Heading currently reads:	Heading should read:
Complications of Drug Therapy	Complications of Psychotropic Drug Therapy

Page 16-28, Complications of Drug Therapy

Text currently reads:	Text should read:
Beware of the possible complications of drug	Beware of the possible complications of
therapy:	pscyhotropic drug therapy:

Pulmonary Medicine:

Page 6-3, Diagnostic Tests > Pulmonary Function Tests (PFTs)

Text currently reads:	Text should read:
Spirometry cannot measure reserve volume.	Spirometry does not measure residual volume.

Page 6-75, Immunosuppressed Patients > Lung Pathogens in the Immunosuppressed > Fungi > Nocardia

content moved to

Page 6-73, Immunosuppressed Patients > Lung Pathogens in the Immunosuppressed > Bacterial Pneumonia

Text currently Nocardia heading; no content	Text moved to Bacterial Pneumonia heading; no
change; Nocardia heading deleted. Nocardia is	content change
not a Fungi	
Nocardia asteroides lung infections are usually	Nocardia asteroides lung infections are usually
seen in T-cell deficient patients (not those with	seen in T-cell deficient patients (not those with
humoral deficiency) and in patients with	humoral deficiency) and in patients with
pulmonary alveolar proteinosis. The pulmonary	pulmonary alveolar proteinosis. The pulmonary
lesions may cavitate. Brain abscesses and	lesions may cavitate. Brain abscesses and
subcutaneous dissemination can occur. This is	subcutaneous dissemination can occur. This is
treated with sulfonamides.	treated with sulfonamides.

Women's and Men's Health:

Page 11-18, Office Gynecology > Polycystic Ovary Syndrome (PCOS) > Pathophysiology

Text currently reads:	Text should read:
In summary, in PCOS, estrogen, androgen, and	In summary, in PCOS, estrogen, androgen, and
FSH levels are increased, whereas LH is	LH levels are increased, whereas FSH is
decreased.	decreased.